1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
## 引入包
import torch
from torchvision import transforms #处理图像
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F #激活
import torch.optim as optim
## 准备数据
batch_size = 64
transform = transforms.Compose([ #把一系列对象组成一个pipeline
transforms.ToTensor(), #把整数像素值0-255转变为图像张量:值0-1,维度:CxWxH (1x28x28),方便卷积
transforms.Normalize((0.1307,), (0.3081,)) ]) #归一化,减去均值,除以标准差, 使所有的像素值满足0-1分布
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform) #读取数据时就做转变
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = dataset.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) #不打乱,每次测试顺序一样,方便对比结果
## 设计模型
class Net(torch.nn.Module):
def __init__(self):
self.l1 = torch.nn.Linear(784, 512) #线性层把784维变成512维
self.l2 = torch.nn.Linear(512, 256) #将到256
self.l3 = torch.nn.Linear(256, 128) #将到128
self.l4 = torch.nn.Linear(128, 64) #将到64
self.l5 = torch.nn.Linear(64, 10) #将到10,输出(N,10)的矩阵
def forward(self, x): #向前计算输出
x = x.view(-1, 784) #改变张量的形状,把一张图像变成一个二阶的张量(矩阵)784列,-1表示自动计算行数N
x = F.relu(self.l1(x)) #输入l1,对输出做激活
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x) #最后一个线性层不激活
model = Net()
## 构造损失和优化器
criterion = torch.nn.CrossEntropyLoss() #经过softmax,求对数,乘以-Y
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) #模型较大,用冲量
## 训练和测试
def train(epoch): #一轮训练的运算
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0): #取出训练样本
inputs, target = data #取出样本和标签
optimizer.zero_grad() #梯度清零
outputs = model(inputs)
loss = criterion(outputs, target) #前馈:计算输出和损失
loss.backward() #反馈
optimizer.step() #更新一步权重
running_loss += loss.item() #累计损失
if batch_idx %300 == 299 #每300批(因为从0开始数)输出一次loss
print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx + 1, running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad(): #不需要反向传播,就不需要计算梯度
for data in test_loader:
images, labels = data #取出测试样本及其标签
outputs = model(image) #计算预测值 Nx10 的矩阵
_, predicted = torch.max(outputs.data, dim=1) #找出每一行中最大值的下标, 即所属类别,和它的值。dim=1表示沿着行方向寻找(0是列方向)
total += labels.size(0) #测试样本总数N
correct += (predicted == labels).sum().item() #正确分类的个数
print("Accuracy on test set: %d %%" % (100*correct /total))
if __name__ == '__main__':
for epoch in range(10): #训练10轮
train(epoch)
if epoch %10 ==9:
test()
|