Table of contents
Upsampling
DL-based
PU Net
Problems:
-
Upsampling task: Increase density and Increase details of a point cloud.
-
3DGS needs to increase density in some cases.
- In the application of stream transmission, 3DGS needs to be compressed. That means reducing the number of Gaussians before transmission, and restoring density after receiving the low-resolution 3DGS model.
References:
- PU-Net: Point Cloud Upsampling Network
- 【官方】2025小迈步之使用 AI 求解偏微分方程:探索 PINN 和 NO 的应用 -bilibili - MATLAB中国
-
【GAMES Webinar-175期:Bijective Projection in a Shell-Zhongshi Jiang-几何处理专题 - GAMES-Webinar
- This video was played automatically after the newest episode in the list loop mode.
Addressing:
(2025-04-15T01:01:07)
-
Patch-wise feature extraction
-
Supports:
- Context information
-
-
Loss function encourages points on underlying surface
-
Supports:
-
This paper doesn’t explicitly reconstruct surface. In contrast, MLS does compute a surface with polynomials.
-
Splats rendering doesn’t require a mesh, but the underlying surface is useful for further process. For example, the surface can serve as a reference when the resolution of a set of 3D Gaussians is required to be adaptive to present different LOD.
Therefore, determining the surface is an important task.
(2025-04-17T06:34)
-
Splats 在应用中可能确实不需要 mesh 参与,但是 mesh 可以作为处理过程中的中间态(类比于“潜空间”), 比如构建出 mesh 之后,可以通过做 remesh 来实现先从稀疏到稠密,再从稠密到稀疏的映射r3-Jiang(这让我想起了神经网络的维度变化:先升维再降维), 从而实现上采样。
不过,这种上采样方式还是依赖 mesh 的质量。
-
(2025-04-15T23:51:43)
-
PINN embeds physics information into network through loss functionsr2-小迈步
- Another way is using neural operator
-
-
Actions:
-
Representation
GaussianPU
Problems:
- I suspected the gaps between Gaussians will be revealed when zooming in.
References:
-
GaussianPU: A Hybrid 2D-3D Upsampling Framework for Enhancing Color Point Clouds via 3D Gaussian Splatting
- Refered by DeepSeek on Apr 05,25
Flow Matching
EF
References:
-
Efficient Point Clouds Upsampling via Flow Matching
- Refered by 超绝发小论文新思路:点云! - 小小的文章 - 知乎 (Apr 15, 25)
- Searched by
GaussianPU: A Hybrid 2D-3D Upsampling Framework for Enhancing Color Point Clouds via 3D Gaussian Splattingin DDG
Registration
SDFReg
References:
Completion
DL
(2025-04-14T14:32:48)
- These four papers are for point cloud completion tasks.
PointAttN
Problems:
- “摆脱对 KNN 的依赖”
References:
Notes:
-
What are their innovations?
-
Reasons:
- Figuring out their novelty to compare it with mine method.
-
Actions:
-
existing methods use explicit local region partitions like kNNs, which makes them sensitive to density distribution and limits receptive fields.
- I do used kNN.
- Reviewer 2 also said “sensitivity”
-
-
(2025-04-30T01:03)
-
How do they generate new points?
DMF-Net
References:
-
DMF-Net
- Refered by Transformer+点云!新思路结合! - 梅花三弄的文章 - 知乎
- Found in s1
PINN
Problems:
(2025-04-15T19:17:00)
-
I believe a point cloud is a physical field, which is supposed to be approximated/regressed by a PINN.
Specifically, the observation (image or sampled points) are training data, from which the physics field is integrated into a neural network.
Addressing:
(2025-04-16T18:33:00)
-
PINN: 把物理先验知识加入神经网络的训练中r2-小迈步
-
Supports:
- NERF 也是pinn 吧,其中的物理先验是渲染方程。渲染方程是光传输的近似,所以也可以直接应用光传输或者计算成像的物理方程作为损失函数
-
Projection
EAR
Problems:
- Enhance edges in a point cloud
References:
Notes:
(2025-05-03T23:21)
-
利用平滑区域的法向量指导填充边缘的法向量r2-秘塔
-
Supports:
-
EAR 依据平滑区域的法向量渐进式 Progressively 推测尖锐区域的法向量
-
Steps:
-
Ensure the confidence of normal vectors of the flat areas: Denoising + 重投影
-
Completing edges: Progressively upsampling by expanding flat arear
flowchart LR A["EAR"] --> Goal["尖锐区域的法向量"] A --> Base["利用平滑区域"] -- "逐步填充
双侧投影(新点)" --> Goal Denoise["双边滤波
去除噪声
测试不同 level 噪声"] Refine["各向异性重投影
异构投影"] subgraph Prep direction BT Denoise --> Refine end Refine --> Base -
-
Usages of normal vectors
-
EAR:法向量 -> “检测”/突出边缘 -> 投影填充,增强边缘
-
可微渲染 (3DGS):像素在多视图中的一致性 -> 点的空间位置 -> 几何 -> 采样 -> 渲染
-
-
辐射度缩放?
- 这也许也说明了:辐射度与几何之间存在关联,可以利用辐射度推断几何
-
-
Meso-Skeleton
D-Points
References:
Notes:
(2025-05-04T02:07)
-
以“中尺度骨架”作为全局信息r2-元宝
-
Supports:
-
D-point 是把 Meso-skeleton 的点与外层点用 直线段相连,那我是否可以用 多项式曲线 连接一个内点和一个外点呢?
-
D-Point 的叙事也是:结合基础层次的 全局信息和外延的局部信息
-
D-Point 可以保留 动物的翅膀,这个任务 不常见。 以及对细微物体的重建也是一个值得探索的课题。
-
Repulsion 的目的是鼓励形成曲面?
-
对点云做搜索(retrieveal)也很重要啊!
-
比如一个场景被扫描成点云之后(点云不包含语义信息),我想搜索:“房间里有几把椅子?”。
-
所以这个问题是:如何对点云做物体识别?(PointNet 是做什么的?)
-
直接对点云做操作处理,计算量太大,而这种“深点”可以找到点云的拓扑吗?Meso-skeleton 是点云的拓扑吗?
应该不是,因为输入点云的形状不一定完整,提取出来的拓扑结构不是物体本身的拓扑。
-
不过把点云的拓扑结构作为神经网络的训练数据,应该比较高效
-
-
-
Denoising
References: