watch: AML 01 | Learning Problem

Outline

  1. Example of machine Learning
  2. Components of Learning
  3. Perceptron
  4. Types of learning
  5. Puzzle

Machine Learning

  • Essence
    1. A pattern exists
    2. We cannot pin it down mathematically
    3. we have data on it.

Perceptron

  • $h(\mathbf x) = \operatorname{sign} \left( \sum_{i=0}^d w_i x_i \right) = \operatorname{sign} (\mathbf w^T \mathbf x)$

PLA

  • steps:
    1. Given the training set: $(\mathbf x_1, \mathbf y_1),(\mathbf x_2, \mathbf y_2), \cdots, (\mathbf x_N, \mathbf y_N)$
    2. pick a misclassified point: $sign (\mathbf w^T \mathbf x_n) \neq y$
    3. update the weight vector: $\mathbf w \leftarrow \mathbf w + y_n \mathbf x_n$

Types of learning

  • Supervised learning: input “correct output”.
  • Unsupervised learning: no “correct output” input.
  • Reinforcement learning: introduce the grade of output.

这门课在证明一件事:通过fit数据,就可以”learn“到未知目标函数。