Outline
- Example of machine Learning
- Components of Learning
- Perceptron
- Types of learning
- Puzzle
Machine Learning
- Essence
- A pattern exists
- We cannot pin it down mathematically
- we have data on it.
Perceptron
- $h(\mathbf x) = \operatorname{sign} \left( \sum_{i=0}^d w_i x_i \right) = \operatorname{sign} (\mathbf w^T \mathbf x)$
PLA
- steps:
- Given the training set: $(\mathbf x_1, \mathbf y_1),(\mathbf x_2, \mathbf y_2), \cdots, (\mathbf x_N, \mathbf y_N)$
- pick a misclassified point: $sign (\mathbf w^T \mathbf x_n) \neq y$
- update the weight vector: $\mathbf w \leftarrow \mathbf w + y_n \mathbf x_n$
Types of learning
- Supervised learning: input “correct output”.
- Unsupervised learning: no “correct output” input.
- Reinforcement learning: introduce the grade of output.
这门课在证明一件事:通过fit数据,就可以”learn“到未知目标函数。